High Precision RTC module—SD2405AL (V1.00)

Integrated RTC/Crystal

1. General Description

The SD2405AL is an extremely accurate \(\text{I}^2 \text{C} \) real-time clock (RTC) with crystal compensation, inner chargeable battery. The SD2405AL is available in industrial temperature ranges.

The SD2405AL is dual power supply system. When the primary power supply goes down to an assigned value or resumes from low power, the system can switch between the primary power supply and battery automatically.

The SD2405AL can generates various periodic interrupt clock pulses lasting for long period (one year), and three alarm interrupts can be made by year, month, date, days of the week, hours, and minutes, seconds. It also provides a selectable 32.768KHz~1Hz clock output for an external MCU. The product incorporates a time trimming circuit that adjusts the clock with higher precision by adjusting any errors in crystal oscillator frequencies based on signals from the CPU. A 12-bytes general SRAM is implemented in the SD2405AL.

2. Features:

- Operation voltage range:3.3V~5.5V.
- Low-power:typical 1uA (inner battery, \(T_a=25^\circ \text{C} \))
- Accuracy ±5ppm from -40°C to +85°C.
- Fast (400kHz) \(\text{I}^2 \text{C} \) Interface(4.5~5.5V).
- Real-Time Clock Counts Seconds, Minutes, Hours, Day, Date, Month, and Year with Leap Year Compensation Valid Up to 2100.
- Time-of-Year, Month, Day, Week, Hour, Minute, Second Alarms.
- Programmable Square-Wave Output:32768Hz,4096Hz...1Hz..1/16Hz.
- Countdown timer interrupt.
- High precision time trimming circuit.
- 12-hour/24-hour time display selectable.
- CMOS logic
- ROHS Recognized.
- Package: 16-pin, 300-mil DIP.
3. **block diagram**

4. **Pin Configuration**

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 5, 6, 7, 16</td>
<td>NC</td>
<td>No connection</td>
<td>No connection or GND connection</td>
</tr>
<tr>
<td>2</td>
<td>TEST</td>
<td>Testing pin for Voltage of Inner battery, output via 100k resistor</td>
<td>No connection (only use for testing)</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SDA</td>
<td>Serial Data Input/Output. This pin is the data input/output for the I2C serial interface. This open-drain pin requires an external pull-up resistor.</td>
<td>Open-N-channel output, cmos input. When backup power source is used, the function of this pin is disabled.</td>
</tr>
<tr>
<td>10</td>
<td>SCL</td>
<td>Serial Clock Input. This pin is the clock input for the I2C serial interface and is used to synchronize data movement on the serial interface.</td>
<td>cmos input. When backup power source is used, the function of this pin is disabled.</td>
</tr>
</tbody>
</table>
5. Registers

5.1 Table of the RTC registers

<table>
<thead>
<tr>
<th>Add.</th>
<th>Register bank</th>
<th>Register name</th>
<th>BIT</th>
<th>Value (DEC)</th>
<th>Default (BIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00H</td>
<td>Real time clock registers</td>
<td>Second</td>
<td>0</td>
<td>S40</td>
<td>S20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minute</td>
<td>0</td>
<td>MN40</td>
<td>MN20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hour</td>
<td>12_/24</td>
<td>H20</td>
<td>P/</td>
</tr>
<tr>
<td>03H</td>
<td>Time alarm registers</td>
<td>Week</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Day</td>
<td>0</td>
<td>0</td>
<td>D20</td>
</tr>
<tr>
<td>05H</td>
<td></td>
<td>Month</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>06H</td>
<td></td>
<td>Year</td>
<td>Y80</td>
<td>Y40</td>
<td>Y20</td>
</tr>
<tr>
<td>07H</td>
<td></td>
<td>Second alarm</td>
<td>0</td>
<td>AS40</td>
<td>AS20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minute alarm</td>
<td>0</td>
<td>AMN40</td>
<td>AMN20</td>
</tr>
<tr>
<td>08H</td>
<td></td>
<td>Hour alarm</td>
<td>0</td>
<td>0</td>
<td>AH20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Week alarm</td>
<td>0</td>
<td>0</td>
<td>AW5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Day alarm</td>
<td>0</td>
<td>0</td>
<td>AD20</td>
</tr>
<tr>
<td>09H</td>
<td></td>
<td>Month alarm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Year alarm</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0EH</td>
<td></td>
<td>Alarm enable</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0FH</td>
<td>Control registers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CTR1</td>
</tr>
<tr>
<td>10H</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CTR2</td>
</tr>
<tr>
<td>11H</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CTR3</td>
</tr>
<tr>
<td>12H</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TTF</td>
</tr>
<tr>
<td>13H</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Count down</td>
</tr>
<tr>
<td>14~1FH</td>
<td>General RAM</td>
<td>(12Bytes)</td>
<td>BIT7</td>
<td>BIT6</td>
<td>BIT5</td>
</tr>
</tbody>
</table>

5.2 Real Time Clock Registers [00h to 06h]

These RTC (Real time clock) registers are stored as binary-coded decimal BCD format.

- **Seconds and Minutes**: range from 0 to 59;
- **Hour**: can be set 12-hour or 24-hour mode;
- **day**: from 1 to 31,
- **Month**: from 1 to 12,
- **Year**: from 0 to 99,
Day of the Week: from 0 to 6.

24 HOUR TIME

If 12_/24 bit of the Hour register is “1”, the RTC uses a 24-hour format.
If the 12_/24 bit is “0”, the RTC uses a 12-hour format

Note:
1. You must clear the hour’s highest bit 12_/24 after you have gotten the data from the hour register, otherwise it will be incorrect when the time is P.M.
2. After power on reset, the real time clock data registers aren’t cleaned or set to be "1".
3. When writing the real time data into RTC registers(00H ~ 06H), you must write all of the total seven bytes data one time.

For example: when the time is “2006-12-20 Wednesday 18:19:20(24-hour format)”, the register 00~07H should be Assigned by 20H, 19H, 98H, 03H, 20H, 12H, 06H. The assignment of hour should be paid more attention, since 12_/24 bit is “1”.

5.3 Interrupt Control Register [08h to 13h]

The SD2405AL have three different interrupts and are controlled by these bits of the INTAE, INTFE, INTDE:

<table>
<thead>
<tr>
<th>No.</th>
<th>Interrupt enable bit (1=enable,0=disable)</th>
<th>Interrupt name</th>
<th>Interrupt flag (1=Yes,0=No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTAE</td>
<td>Alarm Interrupt</td>
<td>INTAF</td>
</tr>
<tr>
<td>2</td>
<td>INTFE</td>
<td>Frequency Interrupt</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>INTDE</td>
<td>Countdown timer interrupt</td>
<td>INTDF</td>
</tr>
</tbody>
</table>

When the alarm interrupt is generated, the interrupt flag INTAF bit is set to 1; when the countdown interrupt is generated, interrupt flag INTDF bit is set to 1; if the flag bits is set to 1, it need to clear by program. Frequency interrupt hasn't any flag.

The three interrupts used one output pin INT. The INT output is selected via INTS0, INTS1 which are the control register bits of the control register(CTR2).

<table>
<thead>
<tr>
<th>No.</th>
<th>INTS1</th>
<th>INTS0</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Disable output</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Alarm Interrupt</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>Frequency Interrupt</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Countdown timer interrupt</td>
</tr>
</tbody>
</table>

(1) **Alarm Interrupt**

The alarm interrupt is enabled via the INTAE bit, and the alarm time data include second, minute, hour, day, week, month and year are stored in time alarm registers(07h~0Dh).

Note: the highest bit of hour alarm register(09h) must be clear to logic "0" all the time.

Real time alarm enable register is 0EH:

<table>
<thead>
<tr>
<th>BIT</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit name</td>
<td>Alarm enable</td>
<td>Year (0Dh)</td>
<td>Month (0Ch)</td>
<td>Day (0Bh)</td>
<td>Week (0Ah)</td>
<td>Hour (09h)</td>
<td>Minute (08h)</td>
<td>Second (07h)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>EAY</td>
<td>EAMO</td>
<td>EAD</td>
<td>EAW</td>
<td>EAH</td>
<td>EAMN</td>
<td>EAS</td>
</tr>
</tbody>
</table>

Note: 1=enable, 0=disable.
When one or more of the alarm registers are loaded with a valid second, minute, hour, day , week, month, year and its corresponding alarm enable bit is a logic 1, then that information will be compared with the current second, minute, hour, day , week, month, year, When all enabled comparisons first match, the bit INTAF (Alarm flag) is set.

Note:

1. When the week alarm and the date alarm are both enable at the same time, only the date alarm is valid and the week alarm is invalid.

2. Week alarm register data's format is different from real-time clock week data format. The bit of Week alarm register AW6.AW5.AW4.AW3.AW2.AW1.AW0 is respectively indicated Saturday, Friday, Thursday, Wednesday, Tuesday, Monday, Sunday. For example, AW6, AW1 = 1, and other bits are clear to 0, alarm interrupt will be output from INT pin on Monday and Saturday.

The INTAF bit will automatically be cleared when the alarm enable register is written. The alarm interrupt output function is selected by setting the INTS1 bit to “0”, the INTS0 bit to “1”,

The alarm function can be set in either single event alarm mode or periodic interrupt alarm mode (selected by IM bit).

<table>
<thead>
<tr>
<th>IM</th>
<th>Alarm interrupt mode</th>
<th>INT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>single event alarm</td>
<td>Remain low until the INTAF bit is reset</td>
</tr>
<tr>
<td>1</td>
<td>periodic interrupt alarm</td>
<td>Periodic pulse until the INTAF bit is reset</td>
</tr>
</tbody>
</table>

For example:

1. Let register 0EH=00000001B, second alarm register 07H=20H, bit INTAE=1, IM=1, INTS1=0, INTS0=1. Once second data reaches 20H, INT will generate a 250ms-width pulse.

2. Let register 0EH=00010111B, week alarm register 0AH=010 0110B, hour alarm register 09H=08h, minute alarm register 08H=30h, second alarm register 07H=00h, Bit INTAE=1, IM=1, INTS1=0, INTS0=1, when reaching 8:30:00 on Mon, Tue, Fri, INT Pin will generate a 250ms-width pulse.

3. Let register 0EH=00010111B, day alarm register 0BH=01h, hour alarm register 09H=08h, minute alarm 08H=30h, second alarm 07H=00h, Bit INTAE=1, IM=1, INTS1=0, INTS0=1, when reaching the first day of month at 8:30:00, INT Pin will generate a 250ms-width pulse.

4. Let register 0EH=0111 0100B, year alarm register 0DH=08h, month alarm register 0CH=08h, day alarm register 0BH=08h, hour alarm register 09H=20h, Bit INTAE=1, IM=0, INTS1=0, INTS0=1, 12/24=1, when reaching 2008-8-8 20:0:0 INT Pin will generate a 250ms-width pulse.

(2) Frequency interrupt

The frequency interrupt is enabled by setting the INTFE bit to “1”. The signal frequency can be selected by the FS3, FS2, FS1, FS0 bits in the register CTR3:
(3) Countdown timer interrupt

The countdown timer interrupt is enabled and disabled via the timer control register bit INTDE. The frequency source is selected by the TDS1, TDS0 bits in the control register 3 (CTR3).

<table>
<thead>
<tr>
<th>frequency(HZ)</th>
<th>FS3</th>
<th>FS2</th>
<th>FS1</th>
<th>FS0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32768</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4096</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1/16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1S</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

When countdown timer interrupt is enabled and an 8-bit binary countdown data is written into the countdown timer, the countdown timer will reduce according to the source clock. If the countdown timer reduce to zero, The countdown interrupt flag will be set (control register 1 bit INTDF) to “1” immediately. The longest period of the countdown timer interrupt is 256 minutes.

5.4 Time Trimming Register [12h]

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F6</td>
<td>F5</td>
<td>F4</td>
<td>F3</td>
<td>F2</td>
<td>F1</td>
<td>F0</td>
</tr>
</tbody>
</table>

For the following reasons:

1) In general crystal oscillators are classified by their central frequency of CL (load capacitance) and available further grouped in several ranks as ±10, ±20 and ±50ppm of fluctuations in precision.

2) The fluctuation of IC circuit frequency is ±5~10ppm at room temperature.
3) Here, the clock accuracy at room temperature varies along with the variation of the characteristic of crystal oscillator.
4) The influence of stray capacitance on circuit board
These factors will cause large errors
Using the time trimming circuit gain or lose of clock may be adjusted with high precision by changing clock pulses for one second every 20 seconds.

F6 to F0:
The time trimming circuit adjust one second count based on this register readings when second digit is 00, 20, or 40 seconds. Normally, counting up to seconds is made once per 32,768 of clock pulse (or 32,000 when 32.000KHz crystal is used) generated by the oscillator. Setting data to this register activates the time trimming circuit.

Register counts will be incremented as ((F5, F4, F3, F2, F1, F0)-1) x2 when F6 is set to “0”.
Register counts will be decremented as ((F5, F4, F3, F2, F1, F0) +1) x2 when F6 is set to “1”.
Counts will not change when (F6, F5, F4, F3, F2, F1, F0) are set to (*, 0, 0, 0, 0, *).

For example, when 32.768KHz crystal is used.
When (F6, F5, F4, F3, F2, F1, F0) are set to (0,1, 0, 1, 0, 0, 1), counts will change as: 32768+ (29-1) *2=32824 (clock will be delayed) when second digit is 00, 20, or 40.
When (F6, F5, F4, F3, F2, F1, F0) are set to (0, 0, 0, 0, 0, 0, 1), counts will remain 32,768 without changing when second digit is 00, 20, or 40.
When (F6, F5, F4, F3, F2, F1, F0) are set to (1, 1, 1, 1, 1, 1, 0), counts will change as: 32768- (1+1)*2=32764 (clock will be advanced) when second digit is 00, 20, or 40.
Adding 2 clock pulses every 20 seconds: 2/ 32768*20 =3.051ppm (or 3.125ppm when 32.000KHz crystal is used), delays the clock by approx. 3ppm. Likewise, decrementing 2 clock pulses advances the clock by 3ppm. Thus the clock may be adjusted to the precision of±1.5ppm.

Note: that the time trimming function only adjusts clock timing and oscillation frequency but 32.768KHz clock output is not adjusted

Computational method of time trimming register value
1. When oscillation frequency *f* > target frequency *f*₀ (clock gain)
Adjustment amount*3
\[
\frac{(OscillationFrequency - \text{Target Frequency}) + 0.1}{\text{Oscillation Frequency} \times \left(\frac{2}{(\text{Target Frequency} \times 20)}\right)}
\]
\[
= (\text{Oscillation frequency} - \text{Target frequency}) \times 10^{-1}
\]

*1) Oscillation frequency: Clock frequency output from the INT pin
*2) Target frequency: TYP. 32.768KHz to 32.000KHz
*3) Adjustment amount: A value to be set finally to F6 to F0 bits. This value is expressed in 7 bit binary digits with sign bit (two’s compliment).

2. When oscillation frequency = target frequency (no clock gain or loss)

Set the adjustment value to 0 or +1, or –64, or –63 to disable adjustment.

3. When oscillation frequency < target frequency (clock losses)

Adjustment amount
\[
\frac{(OscillationFrequency - \text{Target Frequency})}{\text{Oscillation Frequency} \times \left(\frac{2}{(\text{Target Frequency} \times 20)}\right)}
\]
\[
= (\text{Oscillation frequency} - \text{Target frequency}) \times 10
\]

Example of Calculations
1) When oscillation frequency = 32770kHz; target frequency = 32768kHz
 Adjustment value = (32770-32768+0.1)/(32770*2/(32768*20))
 =(32770-32768)*10+1=21
 Set (F6, F5, F4, F3, F2, F1, F0) = (0, 0, 1, 0, 1, 0, 1)

2) When oscillation frequency = 32762kHz; target frequency = 32768kHz
 Adjustment value = (32762-32768)/(32762*2/(32768*20))
 = (32762-32768)*10=−60
 To express −60 in 7bi binary digits with sign bit (two’s compliment)
 Subtract 60(3Ch) from 128(80h) in the above case, 80h-3Ch=44h
 Thus set (F6, F5, F4, F3, F2, F1, F0) = (1, 0, 0, 0, 1, 0, 0)
 After adjustment, adjustment error against the target frequency will the approx. ±1.5ppm at a room temperature.

 Notice:
 1) Clock frequency output from the INT pin will change after adjustment by the clock adjustment circuit.
 2) Adjustment range:
 A) When oscillation frequency is higher than target frequency, the range of adjustment values is (F6, F5, F4, F3, F2, F1, F0) = (0, 0, 0, 0, 1, 1, 1) to (0, 1, 1, 1, 1, 1, 1) and actual adjustable amount shall be -3.05ppm to −189.2ppm (-3.125ppm to 193.7ppm for 32000Hz crystal).
 B) When oscillation frequency is lower than target frequency, the range of adjustment values is (F6, F5, F4, F3, F2, F1, F0) = (1, 1, 1, 1, 1, 1, 1) to (1, 0, 0, 0, 1, 0, 0) and actual adjustable amount shall be 3.05ppm to 189.2ppm (3.125ppm to 193.7ppm for 32000Hz crystal).

5.5 User Registers
 Addresses [14h to 1Fh]
 SD2405AL provides 12 bytes of general-purpose RAM for the user to store data.
(1) **WRITE RTC ENABLE BIT (WRTC1, WRTC2, WRTC3):**

Registers (00H ~ 1FH) RTC write enable bits. When the three bits are set to “1”, RTC is enable to be written.

Write enable: Setting the three bits must follow the sequencing: Set the WRTC1 bit to “1” first, then set the WRTC2 and WRTC3 to “1”.

Write disable: Setting the three bits must follow the sequencing: Set the WRTC2 and WRTC3 bits to “0” first, then set the WRTC1 to “0”.

(2) **AUTO RESET ENABLE BIT (ARST):** Enables/disables the automatic reset of the INTAF and INTDF status bits. When ARST bit is set to “1”, these status bits are reset to “0” after a valid read of the respective status register (with a valid STOP condition). When the ARST is cleared to “0”, the user must reset the INTAF and INTDF bits by your program.

(3) **FREQUENCY OUTPUT AND INTERRUPT BIT (FOBAT):** This bit is used for enables/disables the INT pin during battery backup mode (i.e. VBAT power source active). When the FOBAT is set to “1” the INT pin is disabled during battery backup mode. This means that both the frequency output and alarm output functions are disabled. When the FOBAT is cleared to “0”, the INT pin is enabled during battery backup mode.

(4) **POWER ON BIT (RTCF):** when the dual power (both Vdd and Vbat) reset, the RTCF bit will be set to “1”. This bit can be read only.

6. IIC Serial Interface

The SD2405AL supports a bidirectional bus oriented protocol. The protocol defines any device that sends data onto the bus as a transmitter and the receiving device as the receiver. The device controlling the transfer is the master and the device being controlled is the slave. The master always initiates data transfers and provides the clock for both transmit and receive operations. Therefore, the SD2405AL operates as a slave device in all applications.

6.1 Protocol Conventions

1. **Start condition**
 - The SCL and SDA pins are at the “H” level when no data transmission is made. Changing the SDA from “H” to “L” when the SCL and SDA are “H” activates the start condition and access is started.

2. **Stop condition**
 - Changing the SDA from “L” to “H” when the SCL is “H” activates stop condition and accessing stopped.

![Diagram](image.png)

VALID START AND STOP CONDITIONS

3. **Data valid:**
The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions is not limited, and is determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.

(4) **Acknowledge:**

An acknowledge (ACK) is a software convention used to indicate a successful data transfer. The transmitting device, either master or slave, releases the SDA bus after transmitting eight bits. During the ninth clock cycle, the receiver pulls the SDA line LOW to acknowledge the reception of the eight bits of data.

The SD2405AL responds with an ACK after recognition of a START condition followed by a valid Identification Byte, and once again after successful receipt of an Address Byte. The SD2405AL also responds with an ACK after receiving a Data Byte of a write operation. The master must respond with an ACK after receiving a Data Byte of a read operation.

![Diagram of data transfer](image)

VALID DATA CHANGES, AND ACKNOWLEDGE RESPONSE FROM RECEIVER

6.2 The transmission format of data/command

1) Device address

The high effective 7 bits (bit7—bit1) in the address byte are defined as device type ID. In SD2405AL, these 7 bits are 0110010. The lowest bit0 is defined as R/W mode. When this bit is “1”, it is read mode, while “0” is write mode.

The slave address:

<table>
<thead>
<tr>
<th>BIT7</th>
<th>BIT6</th>
<th>BIT5</th>
<th>BIT4</th>
<th>BIT3</th>
<th>BIT2</th>
<th>BIT1</th>
<th>BIT0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>R/W</td>
</tr>
</tbody>
</table>

BIT7—BIT1: The slave address of the SD2405AL is defined as 0110010

BIT0: R/W definition

“1” is read mode. “0” is write mode.

2) Data transmission format

At the end of data transmission/receiving stop condition is generated to complete transmission. However, if start condition is generated without generating stop condition, repeated start condition is met and transmission/receiving data may be continued by setting the slave address again. Use this procedures when the transmission direction needs to be changed during one transmission.
Data is written into the slave from the master

When data is read from the slave immediately after 7bit addressing from the master

When the transmission direction is to be changed during transmission

Inform read has been completed by not generating an acknowledge signal, to the slave side.

Master to slave Slave to master Acknowledge signal
Start signal Stop signal Repeated start signal

(3) Data Transmission Write Format in the SD2405AL

1) First send 7 address bit (0110010), the eighth bit is write command "0", when the ninth bit is ACK signal, SD2405AL is under writing condition.

2) In the following byte, the low 5 bits are determined as internal address in SD2405AL (00H-1FH), the high 3 bits are transmission mode.

3) After writing 1 byte data, there will be 1 bit ACK signal and then writing data in next 1 byte starts. Only when there is a stop signal in the bit after ACK signal, can the writing operation be stopped.

Example of data writing (When writing to internal address 14H to 15H)

(4) Data Transmission Read Format in the SD2405AL

The SD2405AL allows the following two readout methods of data from an internal register.

1) The first method to reading data from the named internal address
 1) The first two steps are the same as write mode. After one bit ACK signal, a new start signal will be produced to change the direction of data transmission in INTERFACE connection.

2) Then send 7 address bit (0110010), the eighth bit command is "1", SD2405AL is under
data reading condition.

3) After another bit’s ACK signal, it starts reading data normally.

4) When a byte data is read and CPU sends 1 bit ACK signal, a next byte data can be read. Only when the 1 bit ACK signal which is sent by CPU is high voltage, can the reading operation be stopped and then CPU sends stop signal.

Example 1 of data read (when data is read from 7H to 9H)

II) The second method to reading data from the internal register is to start reading immediately after writing to the slave address(0110010) and the (R/W) bit. Since the internal address pointer is set to 00h by default, this method is only effective when reading is started from the internal address 00h.

(5) Data Transmission Under Special Condition

The SD2405AL hold the clock tentatively for duration from start condition to stop condition to avoid invalid read or write clock on carrying clock. To prevent invalid read or write clock shall be made during one transmission operation. When 0.5 seconds elapses after start condition any access to the SD2405AL is automatically released to release tentative hold of the clock and access from the CPU is forced to be terminated (automatic resume hold function from the interface).

Also a second start condition after the first condition and before the stop condition is
regarded as the “repeated start condition”. Therefore, when 0.5 seconds passed after the first start condition, access to the SD2405AL is automatically released.

The user shall always be able to access the real-time clock as long as the following two conditions are met.
1) No stop condition shall be generated until clock read/write is started and completed.
2) One cycle read/write operation shall be completed within 0.5 second.

7. Power Control Operation
The power control circuit accepts a VDD and a VBAT input.

Normal Mode (VDD) to Battery Backup Mode (VBAT)
To transition from the VDD to VBAT mode, the following condition must be met: $V_{DD} < V_{BAT} - V_{BATHYS}$, where $V_{BATHYS} \approx 100\text{mV}$

Battery Backup Mode (VBAT) to Normal Mode (VDD)
The SD2405AL device will switch from the VBAT to VDD mode when the following condition occurs:
$V_{DD} > V_{BAT} + V_{BATHYS}$, where $V_{BATHYS} \approx 100\text{mV}$

These power control situations are illustrated in the following figure:

![Battery Switchover Diagram]

In order to reduce the power consumption and improve the reliability, the I2C bus is disable in battery backup mode, but the function of internal counter is normal during battery backup mode. Except the pin SCL and SDA, all the inputs and outputs of the ISD2405AL are active during battery backup mode unless disabled via the control register. The User SRAM is operational in battery backup mode down to 1.8V

8. charging circuit for inner battery
When the voltage of V_{DD} is typical, the circuit will charge the battery automatically until full of charge.

The inner battery capacity is 5.5mAh, the RTC can work more than half a year. It can be fully charged over 100 times.

9. Power-on Reset
The reset circuit only reset parts of the registers excluding Real time clock registers,
10. instructions
 1. To prevent the noise of the circus, two capacities should be laid near the chip.
 Typically 0.1uF and 22uF

11. Application reference circuit

12. Absolute Maximum Rating
 Voltage on VDD, SCL, SDA, and INT pins (Respect to Ground) -0.5V to 7.0V Lead
 Temperature (Soldering, 10s) .. 260°C/10s
 "Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

13. DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Main Power Supply</td>
<td>3.3</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDD0</td>
<td>Supply Current</td>
<td>VDD = 5.0V</td>
<td>2.5µA</td>
<td>2mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>2.0µA</td>
<td>2mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDD2</td>
<td>Supply Current win IIC Active</td>
<td>VDD = 5V</td>
<td>40</td>
<td>120 µA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBAT</td>
<td>Battery Supply Current</td>
<td>VBAT = 3V</td>
<td>1000</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL1</td>
<td>Input Leakage Current On SCL</td>
<td>VDD = 5V</td>
<td>100</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL0</td>
<td>I/O Leakage Current On SDA</td>
<td></td>
<td>100</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRHVS</td>
<td>VBAT Hysteresis</td>
<td></td>
<td>50</td>
<td>100</td>
<td>200 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT Vol</td>
<td>Output Low Voltage</td>
<td>VDD = 5V</td>
<td>IOL = 3mA</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 5V</td>
<td>IOL = 3mA</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. power down timing sequence

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>VDD negative Slewrate</td>
<td></td>
<td>10</td>
<td>V/ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. AC CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vih</td>
<td>SDA and SCL input buffer HIGH voltage</td>
<td>$0.7 \times V_{DD}$</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vih</td>
<td>SDA and SCL input buffer LOW voltage</td>
<td>-0.3</td>
<td>$0.3 \times V_{DD}$</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis</td>
<td>SDA and SCL input buffer hysteresis</td>
<td>$0.05 \times V_{DD}$</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGL</td>
<td>SDA output buffer LOW voltage sinking 3mA</td>
<td>0</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cpin</td>
<td>SDA and SCL pin capacitance</td>
<td>$T=25^\circ C$</td>
<td>$f=1,MHZ$</td>
<td>$V_{DD} \geq 9V$</td>
<td>10</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>fSCL</td>
<td>SCL frequency</td>
<td>400</td>
<td>kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tfIN</td>
<td>Pulse width suppression time at</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tAA</td>
<td>SCL falling edge to SDA output data valid</td>
<td>SCL falling edge crossing 30% of V_{DD} until SDA exits the</td>
<td>900</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tBUF</td>
<td>Time the bus must be free before the start of a new transmission</td>
<td>SDA crossing 70% of V_{DD} during a STOP condition, to SDA crossing</td>
<td>1300</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tLOW</td>
<td>Clock LOW time</td>
<td>Measured at the 30% of V_{DD}</td>
<td>1300</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tHIGH</td>
<td>Clock HIGH time</td>
<td>Measured at the 70% of V_{DD}</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tSUTSTA</td>
<td>START condition setup time</td>
<td>SCL rising edge to SDA falling</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tSDSTA</td>
<td>START condition hold time</td>
<td>From SDA falling edge crossing 30% of V_{DD} to SCL falling</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tISDAT</td>
<td>Input data setup time</td>
<td>From SDA exiting the 30% to 70% of V_{DD} window to SCL rising</td>
<td>100</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tISDHAT</td>
<td>Input data hold time</td>
<td>From SCL falling edge crossing 30% of V_{DD} to SCL entering</td>
<td>0</td>
<td>900</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tISSTD</td>
<td>STOP condition setup time</td>
<td>From SCL rising edge crossing 70% of V_{DD} to SDA rising</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tOSSTD</td>
<td>Output condition hold time</td>
<td>From SDA rising edge to SCL falling edge. Both crossing 70%</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tOH</td>
<td>Output data hold time</td>
<td>From SCL falling edge crossing 30% of V_{DD} until SDA enters</td>
<td>0</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tr</td>
<td>SDA and SCL rise time</td>
<td>From 30% to 70% of V_{DD}</td>
<td>300</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tS</td>
<td>SDA and SCL fall time</td>
<td>From 70% to 30% of V_{DD}</td>
<td>300</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cb</td>
<td>Capacitive loading of SDA or</td>
<td>Total on-chip and off-chip</td>
<td>10</td>
<td>400</td>
<td>PF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rpf</td>
<td>SDA and SCL bus pull-up or pull-down resistor off-chip</td>
<td>Maximum is determined by tr and tS. For $C_b=400,pF$, max is about 2.5,k,Ω. For $C_b=40,pF$, max is about 12–20,k,Ω</td>
<td>1</td>
<td>kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Serial Timing Diagram](image-url)
16. The relationship between frequency error and temperature

17. Ordering Information

<table>
<thead>
<tr>
<th>SD2405ALPI-G</th>
<th>product model</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL TIME</td>
<td>work order serial numbers 00—99</td>
</tr>
<tr>
<td>© 1033 AAAE00</td>
<td>four alphabets work order</td>
</tr>
<tr>
<td></td>
<td>lot number</td>
</tr>
</tbody>
</table>

18. Packaging Information (unit: mm)

SD2405封装尺寸（管脚直径：0.5mm, 误差±0.1mm）