

www.migamotors.com v2.c Page 1 of 8

Miga Motor Company
1250 Addison Street #208

Berkeley, CA 94702
www.migamotors.com

MigaOne-Arduino Tutorial:

Position/Limit Sensing and Cycling with the Arduino Platform

1.0 Introduction
The purpose of this tutorial is to provide a simple introduction to some of the
techniques used to control the actuation of the Miga Motor Company MigaOneTM
actuator. Using a microcontroller and some basic analog circuitry, position and
limit sensing can be used to reliably cycle the MigaOne.

The MigaOne is a linear actuator based on proven shape-memory alloy (SMA)
technology. It provides roughly 0.375’’ of stroke and 2.5 lbs of force. The actuator
can be powered with voltages of 5-30V. For more detailed information, see the
MigaOne Application Notes on the “Downloads” page online at:
www.migamotors.com.

For sensing and control, an Arduino Diecimila platform (SparkFun SKU#: DEV-
00666) is used. The Arduino is a popular open-source electronics platform
admired for its easy-to-use hardware and software package along with its
affordability (a definite draw for hobbyists and tinkerers). The Diecimila is based
on the ATmega168 chip, providing powerful I/O capabilities useful for physical
computing. For more details, see the Arduino’s homepage at www.arduino.cc or

SparkFun at: www.sparkfun.com

2.0 Setup
In order to reliably cycle the MigaOne, the position of the output shaft must be (1)
sensed and (2) controlled. Section 2.0 provides an outline for the hardware and
software setup needed to achieve repeated actuation.

www.migamotors.com v2.c Page 2 of 8

2.1 Hardware
All of the following circuits can be assembled in a matter of minutes with basic
electrical prototyping tools (breadboard, wire, soldering iron, power supply, etc).
A basic understanding of electronics and circuit-building techniques is assumed.

2.1.1 Parts List

(1) Miga Motor Company MigaOne actuator
(2) Arduino Diecimila development platform
(3) Power MOSFET – TIP120 or similar
(4) 10k linear potentiometer (Alps RDC10 series) OR (1) 47k! resistor
(5) 1k! resistor

Basic electrical prototyping tools (as suggested above)

2.1.2 Driver Circuit
The driver circuit uses a power MOSFET and a current limiting resistor to
switch the power to the MigaOne with a logic signal from the Arduino
controller. The circuit schematic is shown below:

When the digital signal is high, current is allowed to flow to ground
through the MOSFET, actuating the MigaOne. When the digital signal is
low, no current flows and the MigaOne is effectively “off”. This setup
basically allows a high-current circuit to be switched with a low current,
logic-level signal provided by the Arduino.

2.1.3 Position Sensing
The position of the output shaft is sensed with a
linear potentiometer. The potentiometer acts as
a dynamic voltage divider, seen in the following
schematic:

The Arduino supplies +5V. As the
potentiometer slider translates during actuation,
the output voltage changes due to changing
resistance. This output voltage is monitored

www.migamotors.com v2.c Page 3 of 8

with one of the Arduino’s ADC inputs, returning a value between 0 and
1023 depending on the observed voltage level. With the output shaft
securely coupled to the linear potentiometer, reliable position feedback can
be achieved.

2.1.4 Limit Sensing
Since position feedback during the entire stroke is not necessary for
actuator cycling, an alternative scheme can be used to sense when the
MigaOne has reached the end of a full stroke. This method uses the limit
switch built into the MigaOne. The following circuit is used:

This is a simple “pull-up resistor” scheme. Before the actuator has reached
the end of stroke, the switch node is floating and the analog input is
“pulled-up” to +5V. When the output shaft comes in contact with the limit
switch, the switch node is pulled to roughly one-sixth of the voltage
supplied to the actuator*. This change in voltage can be read by the analog
input, which converts the analog signal to a value between 0 and 1023 (0 for
0V, 1023 for +5V). A 5k resistor is included to limit the current. It is
recommended that the voltage supplied to the actuator be no greater than
+18V if this limit-sensing scheme is used, due to increased actuator speed
and more inconsistent limit sensing.

*Note: This value comes from the fact that the output shaft is not exactly at ground, due to
resistance in the jumper wire and PCB copper tracing. Ideally, the output shaft would be
at ground and a simpler digital input (HIGH or LOW sensing) could be used to detect the
end of stroke.

2.2 Programming the Arduino
After the basic circuits have been assembled, the Arduino platform can be
programmed to cycle the MigaOne actuator repeatedly and reliably. The
microprocessor on the Arduino is programmed using its own language and
development environment. Even if the user has very little or no programming
experience, it is very easy to write and understand programs for the Arduino. See
www.arduino.cc for full documentation.

www.migamotors.com v2.c Page 4 of 8

2.2.1 What you need
 PC or laptop with a USB port
 USB cable (A-type to B-type connectors)
 Installed Arduino development environment (see website)
 Arduino board with installed USB drivers

www.migamotors.com v2.c Page 5 of 8

2.2.2 Cycling with Position Sensing
The following code sample is designed for use with the linear pot:

//--------------MigaOne Cycling------------------------------

//Cycles the MigaOne, using analog position readings from pot

//Supply desired voltage (suggested 12V)

//Outputs number of cycles, time to reach end of stroke

//Initial variable declarations

int motorPin = 8; //motor control
int potPin = 2; //analog input (wiper)

int val = 0; //serial reading

int potBuffer = 10; //pot reading buffer
int reps = 0; //cycles completed

long startTime = 0; //starting time value

long time = 0; //current time

int dist = 150; //desired travel distance (calibrated)
int initPot = 0; //initial pot value

int thresh = 0; //pot value threshold

void setup() {

 //Pin setup

 pinMode(motorPin,OUTPUT);
 pinMode(potPin,INPUT);

 //Begin serial communication

 Serial.begin(9600);
}

void loop() {

 //Initialization

 initPot = analogRead(potPin);
 thresh = initPot + dist;

 startTime = millis();

 //Power actuator
 digitalWrite(motorPin,HIGH);

 //Wait until threshold is reached
 while (val < thresh) {

 val = analogRead(potPin);

 time = millis() - startTime;
 }

 //Stop acuation

 digitalWrite(motorPin,LOW);

 //Wait until actuator reaches initial position (+ buffer)

 while (val > (initPot + potBuffer)) {
 val = analogRead(potPin);

 }

 //Increment cycles

 reps = reps + 1;

 //Print reps completed and actuation time
 Serial.print(reps);Serial.print(" ");Serial.println(time);

}

www.migamotors.com v2.c Page 6 of 8

The code does the following:

1) Determine the initial position of the output shaft and calculate how
far the output shaft should travel based on the desired stroke

2) Actuate the MigaOne
3) Wait until limit is reached and record actuation time
4) Cut power
5) Wait until the output shaft returns to initial position (plus desired

buffer)
6) Record cycle number
7) Print cycles completed and actuation time in serial console
8) Repeat

The ‘dist’ variable will need to be calibrated for each setup, and will depend
on the particular potentiometer used in the experiment. Keep in mind that
the analog-to-digital converter (ADC) on the Arduino will provide a value
between 0 and 1023 for a range of 0 to 5V, or the full travel of the linear
potentiometer.

One way to calibrate the desired travel distance is to start small (say, at 50
or 100) and slowly increase the value until the correct stroke is reached. Be
sure to select a value that lies within the possible stroke of the actuator, or
the actuator might never reach an end point and overheat!

The ‘dist’ variable may also be calibrated by experimenting with the linear
potentiometer alone. Use the following code snippet in a separate Arduino
sketch (or comment out main code) to get an idea of how the ADC readings
vary with slider position:

Also be sure that the ADC value increases in the direction of actuation. The
code above can be used as a check.

www.migamotors.com v2.c Page 7 of 8

2.2.3 Cycling with Limit Sensing
The following code sample is designed for use with the limit-sensing
scheme:

//--------MigaOne Cycling--------
//Cycles MigaOne using limit sensing

//Supply desired voltage (+12V suggested, <18V)

//Outputs number of cycles completed

//Initial variable declarations

int motorPin = 8; //motor control pin

int adcPin = 0; //analog in pin
int val = 0; //analog in reading

int limitVal = 900; //limit threshold (calibrated)

int reps = 0; //number of cycles completed

void setup() {

//Pin setup

pinMode(motorPin,OUTPUT);
pinMode(adcPin,INPUT);

 //Begin serial communication
Serial.begin(9600);

}

void loop() {

 //Read analog pin

 val = analogRead(adcPin);

//Test to see if limit has been reached

 if (val < limitVal) {
 digitalWrite(motorPin,LOW);

 reps = reps + 1;

 Serial.println(reps);
 delay(10000);

 }

 else {
 digitalWrite(motorPin,HIGH);

 }

}

The above code does the following:

1) Read the analog input pin
2) If limit hasn’t been reached ! actuate MigaOne
3) If limit has been reached ! cut power, increment and print cycle

number, delay 10 seconds to let output shaft return to starting position
4) Repeat

As a reminder, this scheme should not be used with voltages above 18V.

www.migamotors.com v2.c Page 8 of 8

3.0 Additional Experiments
Using the MigaOne along with the Arduino, the possibilities for experimentation
are endless. The following list presents some experiment ideas and useful control
techniques:

• Actuate the MigaOne and hold at a desired position
• Use PWM control to modulate actuation speed
• Do stroke profile characterization, plotting output shaft position versus

elapsed time
• Control the velocity profile of the MigaOne: actuating at high speed to the

midpoint, then slowing down to the end of stroke, for example
• Life or cycle testing
• Control multiple MigaOne actuators at once

As always, be sure to follow the operation guidelines presented in the MigaOne
Application Notes, available at www.migamotors.com/Downloads.html.

4.0 Summary
This tutorial has provided a basic overview for controlling the MigaOne linear
actuator with the Arduino development platform. More specifically, methods for
controlling and sensing the position of the output shaft for safe and reliable
cycling have been shown.

Happy Actuating!

Note: The recommendations, data, and specifications in this publication are believed to be
accurate and reliable. However, it is the responsibility of the product user to determine the
suitability of Miga Motor Company products for a specific application. While defective
products will be promptly replaced without charge if promptly returned, no liability is
assumed beyond such replacement.

